$L^2$ -eta-invariants and their approximation by unitary eta-invariants

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L–eta–invariants and Their Approximation by Unitary Eta–invariants

Cochran, Orr and Teichner introduced L–eta–invariants to detect highly non–trivial examples of non slice knots. Using a recent theorem by Lück and Schick we show that their metabelian L–eta–invariants can be viewed as the limit of finite dimensional unitary representations. We recall a ribbon obstruction theorem proved by the author using finite dimensional unitary eta–invariants. We show that ...

متن کامل

Etale Groupoids, Eta Invariants and Index Theory

Let Γ be a discrete finitely generated group. Let M̂ → T be a Γ-equivariant fibration, with fibers diffeomorphic to a fixed even dimensional manifold with boundary Z. We assume that Γ → M̂ → M̂/Γ is a Galois covering of a compact manifold with boundary. Let (D(θ))θ∈T be a Γ-equivariant family of Dirac-type operators. Under the assumption that the boundary family is L-invertible , we define an inde...

متن کامل

2 Eta Invariants of Homogeneous Spaces

We derive a formula for the η-invariants of equivariant Dirac operators on quotients of compact Lie groups, and for their infinitesimally equivariant extension. As an example, we give some computations for spheres. Quotients M = G/H of compact Lie groups form a very special class of manifolds, but yet they provide many important examples of Riemannian manifolds with non-negative sectional curva...

متن کامل

Eta Invariants as Sliceness Obstructions and Their Relation to Casson-gordon Invariants

We give a useful classification of the metabelian unitary representations of π1(MK), where MK is the result of zero-surgery along a knot K ⊂ S . We show that certain eta invariants associated to metabelian representations π1(MK)→ U(k) vanish for slice knots and that even more eta invariants vanish for ribbon knots and doubly slice knots. We show that our vanishing results contain the Casson–Gor...

متن کامل

Link Concordance, Boundary Link Concordance and Eta-invariants

We study the eta-invariants of links and show that in many cases they form link concordance invariants, in particular that many eta-invariants vanish for slice links. This result contains and generalizes previous invariants by Smolinsky and Cha–Ko. We give a formula for the eta-invariant for boundary links. In several intersting cases this allows us to show that a given link is not slice. We sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Proceedings of the Cambridge Philosophical Society

سال: 2005

ISSN: 0305-0041,1469-8064

DOI: 10.1017/s0305004104008084